首页 | 本学科首页   官方微博 | 高级检索  
     


The large sample coverage probability of confidence intervals in general regression models after a preliminary hypothesis test
Authors:Paul Kabaila  Rupert E. H. Kuveke
Abstract:We derive a computationally convenient formula for the large sample coverage probability of a confidence interval for a scalar parameter of interest following a preliminary hypothesis test that a specified vector parameter takes a given value in a general regression model. Previously, this large sample coverage probability could only be estimated by simulation. Our formula only requires the evaluation, by numerical integration, of either a double or a triple integral, irrespective of the dimension of this specified vector parameter. We illustrate the application of this formula to a confidence interval for the odds ratio of myocardial infarction when the exposure is recent oral contraceptive use, following a preliminary test where two specified interactions in a logistic regression model are zero. For this real‐life data, we compare this large sample coverage probability with the actual coverage probability of this confidence interval, obtained by simulation.
Keywords:bootstrap  coverage probability  generalized linear models  large sample coverage probability  model selection  post–  model‐selection confidence interval
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号