首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of Semiparametric Models when the Criterion Function Is Not Smooth
Authors:Xiaohong Chen  Oliver Linton  Ingrid Van Keilegom
Abstract:We provide easy to verify sufficient conditions for the consistency and asymptotic normality of a class of semiparametric optimization estimators where the criterion function does not obey standard smoothness conditions and simultaneously depends on some nonparametric estimators that can themselves depend on the parameters to be estimated. Our results extend existing theories such as those of Pakes and Pollard (1989), Andrews (1994a), and Newey (1994). We also show that bootstrap provides asymptotically correct confidence regions for the finite dimensional parameters. We apply our results to two examples: a ‘hit rate’ and a partially linear median regression with some endogenous regressors.
Keywords:Bootstrap  empirical processes  generalized method of moments  median regression  semiparametric estimation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号