Size and distribution trade-offs for the leximin ordering |
| |
Authors: | Bart Capéau |
| |
Affiliation: | 1. Research Institute for Work and Society (HIVA), K.U.LEUVEN, Parkstraat?47, B-3000, Leuven, Belgium
|
| |
Abstract: | A relative invariant and an absolute invariant inequality ordering satisfying extreme bottom-sensitivity, are proposed. It is shown that the leximin social welfare ordering can be expressed in terms of a ranking of distributions on the sole basis of their size, measured by the mean, and the degree of inequality, measured according to these inequality concepts. Leximin thus exhibits extreme bottom-sensitivity. This property does not withstand that leximin prefers a larger size of the cake at the cost of higher inequality in a number of cases. These trade-offs between size and equality are characterised in terms of degrees of dominance of the lower parts of the ordinary and absolute Lorenz curves that are accepted by leximin for a given increase in the mean. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|