首页 | 本学科首页   官方微博 | 高级检索  
     


Block‐threshold‐adapted Estimators via a Maxiset Approach
Authors:Florent Autin  Jean‐Marc Freyermuth  Rainer Von Sachs
Affiliation:1. Université d'Aix‐Marseille, CNRS UMR 6632;2. Katholieke Universiteit Leuven;3. Université Catholique de Louvain‐La‐Neuve
Abstract:We study the maxiset performance of a large collection of block thresholding wavelet estimators, namely the horizontal block thresholding family. We provide sufficient conditions on the choices of rates and threshold values to ensure that the involved adaptive estimators obtain large maxisets. Moreover, we prove that any estimator of such a family reconstructs the Besov balls with a near‐minimax optimal rate that can be faster than the one of any separable thresholding estimator. Then, we identify, in particular cases, the best estimator of such a family, that is, the one associated with the largest maxiset. As a particularity of this paper, we propose a refined approach that models method‐dependent threshold values. By a series of simulation studies, we confirm the good performance of the best estimator by comparing it with the other members of its family.
Keywords:Besov spaces  curve estimation  minimax and maxiset approaches  rate of convergence  thresholding methods  wavelet‐based estimation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号