首页 | 本学科首页   官方微博 | 高级检索  
     

求解输出为有界随机数的排序择优问题
引用本文:濮阳小娟, 钟颖. 求解输出为有界随机数的排序择优问题[J]. 电子科技大学学报社科版, 2023, 25(2): 107-112. DOI: 10.14071/j.1008-8105(2022)-3013
作者姓名:濮阳小娟  钟颖
作者单位:1.四川师范大学 成都 610101;2.电子科技大学 成都 611731
基金项目:国家自然科学基金青年项目(72101047);
摘    要:目的/意义排序择优问题是仿真优化领域的经典研究问题。该问题的目标是设计统计采样算法,通过在有限个统计分布中进行采样并观测随机采样结果从而找到真实均值最大的分布。在该问题的研究中,现有文献大多假设对不同分布进行采样时输出为正态分布随机数,进而基于正态分布随机数相关性质进行算法设计。但在现实中,该假设通常不成立,一旦假设不成立,现有算法的统计有效性将会大受影响。设计/方法将正态假设进行拓展,即假设对不同分布为有界域分布,进而开展算法设计。结论/发现设计出一类顺序淘汰式算法求解输出为有界域随机数的排序择优问题,数值实验验证,此算法效率远高于现有的SE、ME和lil′DCB算法。

关 键 词:仿真优化  排序择优  有界分布  算法设计
收稿时间:2022-06-20

Review on ranking and selection: a new perspective
PUYANG Xiao-juan, ZHONG Ying. Ranking and Selection with Bounded Observations[J]. Journal of University of Electronic Science and Technology of China(SOCIAL SCIENCES EDITION), 2023, 25(2): 107-112. DOI: 10.14071/j.1008-8105(2022)-3013
Authors:PUYANG Xiao-juan  ZHONG Ying
Affiliation:1.Sichuan Normal University Chengdu 610101 China;2.University of Electronic Science and Technology ofChina Chengdu 611731 China
Abstract:[Purpose/Significance] Ranking and selection is a fundamental research problem in the area of simulation optimization. The problem aims to select the statistical population with the largest mean from a finite set of statistical populations by taking samples and observing the random outputs. In the existing literature, while designing procedures to solve the problem, one often assumes that the outputs follow normal distributions and develop procedures based on the statistical properties of normal random variables. However, in practice, the normality assumption on the outputs may sometimes fail to hold. Once the normality assumption is violated, a procedure’s finite-time statistical validity may no longer hold. [Design/Methodology] To overcome this issue, this paper focuses on solving the problem where the outputs are drawn from bounded distributions and develop a fully-sequential procedure. [Conclusions/Findings] A class of sequential elimination algorithms is designed to solve the ranking problem where the output is a random number with bounded domain, and numerical experiments verify that the efficiency of this paper is much higher than the existing SE, ME and lil′DCB algorithms.
Keywords:simulation optimization  ranking and selection  bounded observations  algorithm design
点击此处可从《电子科技大学学报(社会科学版)》浏览原始摘要信息
点击此处可从《电子科技大学学报(社会科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号