首页 | 本学科首页   官方微博 | 高级检索  
     


Enabling high-dimensional range queries using kNN indexing techniques: approaches and empirical results
Authors:Tim Wylie  Michael A. Schuh  Rafal A. Angryk
Affiliation:1.University of Texas - Rio Grande Valley,Edinburg,USA;2.Montana State University,Bozeman,USA;3.Georgia State University,Atlanta,USA
Abstract:Many modern search applications are high-dimensional and depend on efficient orthogonal range queries. These applications span web-based and scientific needs as well as uses for data mining. Although k-nearest neighbor queries are becoming increasingly common due to mobile and geospatial applications, orthogonal range queries in high-dimensional data remain extremely important and relevant. For efficient querying, data is typically stored in an index optimized for either kNN or range queries. This can be problematic when data is optimized for kNN retrieval and a user needs a range query or vice versa. Here, we address the issue of using a kNN-based index for range queries, as well as outline the general computational geometry problem of adapting these systems to range queries. We refer to these methods as space-based decompositions and provide a straightforward heuristic for this problem. Using iDistance as our applied kNN indexing technique, we also develop an optimal (data-based) algorithm designed specifically for its indexing scheme. We compare this method to the suggested naïve approach using real world datasets. The data-based algorithm consistently performs better.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号