首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation for seasonal fractional ARIMA with stable innovations via the empirical characteristic function method
Authors:Mor Ndongo  Abdou Kâ Diongue  Simplice Dossou-Gbété
Affiliation:1. LERSTAD, UFR de Sciences Appliquées et de Technologie, BP 234, Université Gaston Berger, Saint-Louis, Sénégal;2. LMA UMR CNRS 5142, BP 576, Université de Pau et des Pays de l'Adour, France
Abstract:Seasonal fractional ARIMA (ARFISMA) model with infinite variance innovations is used in the analysis of seasonal long-memory time series with large fluctuations (heavy-tailed distributions). Two methods, which are the empirical characteristic function (ECF) procedure developed by Knight and Yu [The empirical characteristic function in time series estimation. Econometric Theory. 2002;18:691–721] and the Two-Step method (TSM) are proposed to estimate the parameters of stable ARFISMA model. The ECF method estimates simultaneously all the parameters, while the TSM considers in the first step the Markov Chains Monte Carlo–Whittle approach introduced by Ndongo et al. [Estimation of long-memory parameters for seasonal fractional ARIMA with stable innovations. Stat Methodol. 2010;7:141–151], combined with the maximum likelihood estimation method developed by Alvarez and Olivares [Méthodes d'estimation pour des lois stables avec des applications en finance. Journal de la Société Française de Statistique. 2005;1(4):23–54] in the second step. Monte Carlo simulations are also used to evaluate the finite sample performance of these estimation techniques.
Keywords:seasonal fractional ARIMA  stable distributions  ECF estimate  whittle estimate  Markov Chains Monte Carlo  Two-Step method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号