首页 | 本学科首页   官方微博 | 高级检索  
     


On algorithms for ordinary least squares regression spline fitting: A comparative study
Abstract:

Regression spline smoothing is a popular approach for conducting nonparametric regression. An important issue associated with it is the choice of a "theoretically best" set of knots. Different statistical model selection methods, such as Akaike's information criterion and generalized cross-validation, have been applied to derive different "theoretically best" sets of knots. Typically these best knot sets are defined implicitly as the optimizers of some objective functions. Hence another equally important issue concerning regression spline smoothing is how to optimize such objective functions. In this article different numerical algorithms that are designed for carrying out such optimization problems are compared by means of a simulation study. Both the univariate and bivariate smoothing settings will be considered. Based on the simulation results, recommendations for choosing a suitable optimization algorithm under various settings will be provided.
Keywords:Bivariate Smoothing  Generalized Cross-validation  Genetic Algorithms  Regression Spline  Stepwise Selection
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号