Abstract: | When a generalized linear mixed model (GLMM) with multiple (two or more) sources of random effects is considered, the inferences may vary depending on the nature of the random effects. For example, the inference in GLMMs with two independent random effects with two distinct components of dispersion will be different from the inference in GLMMs with two random effects in a two factor factorial design set-up. In this paper, we consider a familial-longitudinal model for repeated binary data where the binary response of an individual member of a family at a given time point is assumed to be influenced by the past responses of the member as well as two but independent sources of random family effects. For the estimation of the parameters of the proposed model, we discuss the well-known maximum-likelihood (ML) method as well as a generalized quasi-likelihood (GQL) approach. The main objective of the paper is to examine the relative asymptotic efficiency performance of the ML and GQL estimators for the regression effects, dynamic (longitudinal) dependence and variance parameters of the random family effects from two sources. |