首页 | 本学科首页   官方微博 | 高级检索  
     


On efficient inferences in familial-longitudinal binary models with two variance components
Abstract:When a generalized linear mixed model (GLMM) with multiple (two or more) sources of random effects is considered, the inferences may vary depending on the nature of the random effects. For example, the inference in GLMMs with two independent random effects with two distinct components of dispersion will be different from the inference in GLMMs with two random effects in a two factor factorial design set-up. In this paper, we consider a familial-longitudinal model for repeated binary data where the binary response of an individual member of a family at a given time point is assumed to be influenced by the past responses of the member as well as two but independent sources of random family effects. For the estimation of the parameters of the proposed model, we discuss the well-known maximum-likelihood (ML) method as well as a generalized quasi-likelihood (GQL) approach. The main objective of the paper is to examine the relative asymptotic efficiency performance of the ML and GQL estimators for the regression effects, dynamic (longitudinal) dependence and variance parameters of the random family effects from two sources.
Keywords:asymptotic variance of the estimator  consistency and efficiency  maximum-likelihood and generalized quasi-likelihood estimation  nonlinear conditional probability model  non-stationary longitudinal correlations  random family effects and their variances  regression effects  repeated binary responses
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号