Abstract: | The linear regression model is commonly used in applications. One of the assumptions made is that the error variances are constant across all observations. This assumption, known as homoskedasticity, is frequently violated in practice. A commonly used strategy is to estimate the regression parameters by ordinary least squares and to compute standard errors that deliver asymptotically valid inference under both homoskedasticity and heteroskedasticity of an unknown form. Several consistent standard errors have been proposed in the literature, and evaluated in numerical experiments based on their point estimation performance and on the finite sample behaviour of associated hypothesis tests. We build upon the existing literature by constructing heteroskedasticity-consistent interval estimators and numerically evaluating their finite sample performance. Different bootstrap interval estimators are also considered. The numerical results favour the HC4 interval estimator. |