首页 | 本学科首页   官方微博 | 高级检索  
     


Forecasting using locally stationary wavelet processes
Abstract:Locally stationary wavelet (LSW) processes, built on non-decimated wavelets, can be used to analyse and forecast non-stationary time series. They have been proved useful in the analysis of financial data. In this paper, we first carry out a sensitivity analysis, then propose some practical guidelines for choosing the wavelet bases for these processes. The existing forecasting algorithm is found to be vulnerable to outliers, and a new algorithm is proposed to overcome the weakness. The new algorithm is shown to be stable and outperforms the existing algorithm when applied to real financial data. The volatility forecasting ability of LSW modelling based on our new algorithm is then discussed and shown to be competitive with traditional GARCH models.
Keywords:GARCH  locally stationary wavelet processes  non-decimated wavelets  sensitivity analysis  volatility forecasting
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号