Abstract: | The exact distribution of a renewal counting process is not easy to compute and is rarely of closed form. In this article, we approximate the distribution of a renewal process using families of generalized Poisson distributions. We first compute approximations to the first several moments of the renewal process. In some cases, a closed form approximation is obtained. It is found that each family considered has its own strengths and weaknesses. Some new families of generalized Poisson distributions are recommended. Theorems are obtained determining when these variance to mean ratios are less than (or exceed) one without having to find the mean and variance. Some numerical comparisons are also made. |