首页 | 本学科首页   官方微博 | 高级检索  
     


Piecewise FARIMA models for long-memory time series
Abstract:We consider the problem of modelling a long-memory time series using piecewise fractional autoregressive integrated moving average processes. The number as well as the locations of structural break points (BPs) and the parameters of each regime are assumed to be unknown. A four-step procedure is proposed to find out the BPs and to estimate the parameters of each regime. Its effectiveness is shown by Monte Carlo simulations and an application to real traffic data modelling is considered.
Keywords:break point  local stationarity  long memory  FARIMA model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号