Abstract: | The hybrid bootstrap uses resampling ideas to extend the duality approach to the interval estimation for a parameter of interest when there are nuisance parameters. The confidence region constructed by the hybrid bootstrap may perform much better than the ordinary bootstrap region in a situation where the data provide substantial information about the nuisance parameter, but limited information about the parameter of interest. We apply this method to estimate the post-change mean after a change is detected by a stopping procedure in a sequence of independent normal variables. Since distribution theory in change point problems is generally a challenge, we use bootstrap simulation to find empirical distributions of test statistics and calculate critical thresholds. Both likelihood ratio and Bayesian test statistics are considered to set confidence regions for post-change means in the normal model. In the simulation studies, the performance of hybrid regions are compared with that of ordinary bootstrap regions in terms of the widths and coverage probabilities of confidence intervals. |