首页 | 本学科首页   官方微博 | 高级检索  
     


Bias correction for parameter estimates of spatial point process models
Abstract:When a spatial point process model is fitted to spatial point pattern data using standard software, the parameter estimates are typically biased. Contrary to folklore, the bias does not reflect weaknesses of the underlying mathematical methods, but is mainly due to the effects of discretization of the spatial domain. We investigate two approaches to correcting the bias: a Newton–Raphson-type correction and Richardson extrapolation. In simulation experiments, Richardson extrapolation performs best.
Keywords:Berman–Turner device  composite likelihood  discretization  Gibbs point process  logistic regression  Newton–Raphson algorithm  numerical integration  Poisson point process  pseudolikelihood  Richardson extrapolation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号