首页 | 本学科首页   官方微博 | 高级检索  
     


An empirical investigation of different operating characteristics of several estimators of the intraclass correlation in the analysis of binary data
Abstract:

This paper is concerned with properties (bias, standard deviation, mean square error and efficiency) of twenty six estimators of the intraclass correlation in the analysis of binary data. Our main interest is to study these properties when data are generated from different distributions. For data generation we considered three over-dispersed binomial distributions, namely, the beta-binomial distribution, the probit normal binomial distribution and a mixture of two binomial distributions. The findings regarding bias, standard deviation and mean squared error of all these estimators, are that (a) in general, the distributions of biases of most of the estimators are negatively skewed. The biases are smallest when data are generated from the beta-binomial distribution and largest when data are generated from the mixture distribution; (b) the standard deviations are smallest when data are generated from the beta-binomial distribution; and (c) the mean squared errors are smallest when data are generated from the beta-binomial distribution and largest when data are generated from the mixture distribution. Of the 26, nine estimators including the maximum likelihood estimator, an estimator based on the optimal quadratic estimating equations of Crowder (1987), and an analysis of variance type estimator is found to have least amount of bias, standard deviation and mean squared error. Also, the distributions of the bias, standard deviation and mean squared error for each of these estimators are, in general, more symmetric than those of the other estimators. Our findings regarding efficiency are that the estimator based on the optimal quadratic estimating equations has consistently high efficiency and least variability in the efficiency results. In the important range in which the intraclass correlation is small (≤0 5), on the average, this estimator shows best efficiency performance. The analysis of variance type estimator seems to do well for larger values of the intraclass correlation. In general, the estimator based on the optimal quadratic estimating equations seems to show best efficiency performance for data from the beta-binomial distribution and the probit normal binomial distribution, and the analysis of variance type estimator seems to do well for data from the mixture distribution.
Keywords:Beta-binomial  Bias  Efficiency  Intraclass Correlation  Mean Squared Error  Mixture Of Two Binomial Distributions  Probit Normal Binomial  Quadratic Estimating Equations  Standard Deviation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号