Abstract: | Process capability indices evaluate the actual compliance of a process with given external specifications in a single number. For the case of a process of independent and identically distributed Poisson counts, two types of index have been proposed and investigated in the literature. The assumption of serial independence, however, is quite unrealistic for practice. We consider the case of an underlying Poisson INAR(1) process which has an AR(1)-like autocorrelation structure. We show that the performance of the estimated indices is degraded heavily if serial dependence is ignored. Therefore, we develop approaches for estimating the process capability (both for the observation and innovation process), which explicitly consider the observed degree of autocorrelation. For this purpose, we introduce a new unbiased estimator of the innovations’ mean of a Poisson INAR(1) process and derive its exact as well as asymptotic stochastic properties. In this context, we also present new explicit expressions for the third- and fourth-order moments of a Poisson INAR(1) process. Then the capability indices and the performance of their estimators are analysed and recommendations for practice are given. |