首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian inference for generalized extreme value distributions via Hamiltonian Monte Carlo
Authors:Marcelo Hartmann
Affiliation:Universidade de S?o Paulo, S?o Carlos, Brazil
Abstract:In this article, we propose to evaluate and compare Markov chain Monte Carlo (MCMC) methods to estimate the parameters in a generalized extreme value model. We employed the Bayesian approach using traditional Metropolis-Hastings methods, Hamiltonian Monte Carlo (HMC), and Riemann manifold HMC (RMHMC) methods to obtain the approximations to the posterior marginal distributions of interest. Applications to real datasets and simulation studies provide evidence that the extra analytical work involved in Hamiltonian Monte Carlo algorithms is compensated by a more efficient exploration of the parameter space.
Keywords:Bayesian approach  Extreme value  Hamiltonian Monte Carlo  Markov chain Monte Carlo  Riemann manifold
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号