Abstract: | This paper establishes that instruments enable the identification of nonparametric regression models in the presence of measurement error by providing a closed form solution for the regression function in terms of Fourier transforms of conditional expectations of observable variables. For parametrically specified regression functions, we propose a root n consistent and asymptotically normal estimator that takes the familiar form of a generalized method of moments estimator with a plugged‐in nonparametric kernel density estimate. Both the identification and the estimation methodologies rely on Fourier analysis and on the theory of generalized functions. The finite‐sample properties of the estimator are investigated through Monte Carlo simulations. |