首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian MARS
Authors:DENISON  D. G. T.  MALLICK  B. K.  SMITH  A. F. M.
Affiliation:(1) Department of Mathematics, Imperial College of Science, Technology and Medicine, 180 Queen's Gate, London, SW7 2BZ, UK;(2) Department of Statistics, Texas A & M University, College Station, TX 77843-3143, USA;(3) Queen Mary and Westfield College, London, E1 4NS, UK
Abstract:A Bayesian approach to multivariate adaptive regression spline (MARS) fitting (Friedman, 1991) is proposed. This takes the form of a probability distribution over the space of possible MARS models which is explored using reversible jump Markov chain Monte Carlo methods (Green, 1995). The generated sample of MARS models produced is shown to have good predictive power when averaged and allows easy interpretation of the relative importance of predictors to the overall fit.
Keywords:Bayesian methods  reversible jump Markov Chain Monte Carlo  multiple regression  multivariate adaptive regression splines
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号