首页 | 本学科首页   官方微博 | 高级检索  
     


Sequential Monte Carlo for rare event estimation
Authors:F. Cérou  P. Del Moral  T. Furon  A. Guyader
Affiliation:1.INRIA Rennes - Bretagne Atlantique,Rennes Cedex,France;2.INRIA Bordeaux Sud-Ouest & Institut de Mathématiques de Bordeaux,Université Bordeaux 1,Talence Cedex,France;3.Equipe de Statistique,Université de Haute Bretagne,Rennes Cedex,France
Abstract:This paper discusses a novel strategy for simulating rare events and an associated Monte Carlo estimation of tail probabilities. Our method uses a system of interacting particles and exploits a Feynman-Kac representation of that system to analyze their fluctuations. Our precise analysis of the variance of a standard multilevel splitting algorithm reveals an opportunity for improvement. This leads to a novel method that relies on adaptive levels and produces, in the limit of an idealized version of the algorithm, estimates with optimal variance. The motivation for this theoretical work comes from problems occurring in watermarking and fingerprinting of digital contents, which represents a new field of applications of rare event simulation techniques. Some numerical results show performance close to the idealized version of our technique for these practical applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号