首页 | 本学科首页   官方微博 | 高级检索  
     


Linked Ego Networks: Improving estimate reliability and validity with respondent-driven sampling
Authors:Xin Lu
Affiliation:1. College of Information System and Management, National University of Defense Technology, Changsha, China;2. Department of Sociology, Stockholm University, Stockholm, Sweden;3. Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
Abstract:Respondent-driven sampling (RDS) is currently widely used for the study of HIV/AIDS-related high risk populations. However, recent studies have shown that traditional RDS methods are likely to generate large variances and may be severely biased since the assumptions behind RDS are seldom fully met in real life. To improve estimation in RDS studies, we propose a new method to generate estimates with ego network data, which is collected by asking respondents about the composition of their personal networks, such as “what proportion of your friends are married?”. By simulations on an extracted real-world social network of gay men as well as on artificial networks with varying structural properties, we show that the precision of estimates for population characteristics is greatly improved. The proposed estimator shows superior advantages over traditional RDS estimators, and most importantly, the method exhibits strong robustness to the recruitment preference of respondents and degree reporting error, which commonly happen in RDS practice and may generate large estimate biases and errors for traditional RDS estimators. The positive results henceforth encourage researchers to collect ego network data for variables of interests by RDS, for both hard-to-access populations and general populations when random sampling is not applicable.
Keywords:Ego networks   Respondent-driven sampling   HIV   Reporting error   Differential recruitment
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号