Abstract: | The author proposes an adaptive method which produces confidence intervals that are often narrower than those obtained by the traditional procedures. The proposed methods use both a weighted least squares approach to reduce the length of the confidence interval and a permutation technique to insure that its coverage probability is near the nominal level. The author reports simulations comparing the adaptive intervals to the traditional ones for the difference between two population means, for the slope in a simple linear regression, and for the slope in a multiple linear regression having two correlated exogenous variables. He is led to recommend adaptive intervals for sample sizes superior to 40 when the error distribution is not known to be Gaussian. |