首页 | 本学科首页   官方微博 | 高级检索  
     

基于MATLAB的BP神经网络实现减振器缺陷产品自动识别
引用本文:任 强,谢伟东. 基于MATLAB的BP神经网络实现减振器缺陷产品自动识别[J]. 华南农业大学学报(社会科学版), 2012, 30(4)
作者姓名:任 强  谢伟东
摘    要:减振器是汽车悬架的重要组成部分,其性能直接影响整车的安全性和舒适性,减振器示功图是判断减振器是否合格的重要依据。目前,减振器示功图的类型识别都依赖人的经验。文章通过在MATLAB中训练BP神经网络,实现了减振器缺陷产品的自动识别,该研究具有巨大的市场价值。

关 键 词:减振器;示功图;MATLAB;BP神经网络

Application of BP Neural Network in Defective Product of Shock Absorber Based on MATLAB
REN Qiang,XIE Wei-dong. Application of BP Neural Network in Defective Product of Shock Absorber Based on MATLAB[J]. Journal of South China Agricultural University:Social Science Edition, 2012, 30(4)
Authors:REN Qiang  XIE Wei-dong
Abstract:Shock absorber is an important part of automotive suspension,it will direct influence the safety and comfort of a vehicle. Indicator diagram of shock absorber plays an important role in identifying whether it is qualified. At present, shape identification of the indicator diagram of shock absorber depends heavily on experience. The paper trained BP neural networks with MATLAB to realize automatic identification the defective products of shock absorber. The study has tremendous market value.
Keywords:shock absorber   indicator diagram   MATLAB   BP neural network
点击此处可从《华南农业大学学报(社会科学版)》浏览原始摘要信息
点击此处可从《华南农业大学学报(社会科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号