首页 | 本学科首页   官方微博 | 高级检索  
     

基于广义回归神经网络的瓦斯涌出量预测
引用本文:葛江. 基于广义回归神经网络的瓦斯涌出量预测[J]. 石家庄铁道学院学报(社会科学版), 2013, 0(4): 105-108
作者姓名:葛江
作者单位:西南交通大学 交通运输与物流学院
摘    要:简要介绍了瓦斯涌出量预测问题和广义回归神经网络(GRNN)的特点,指出与常用的BP神经网络相比,使用广义回归神经网络(GRNN)具有收敛迅速、人为干扰小等优点,适宜用于瓦斯涌出量的预测。并对一个案例进行预测,证明了广义回归神经网络(GRNN)可以满足实际生产的精度要求,较好解决瓦斯涌出量预测的问题。

关 键 词:神经网络;涌出量;预测;GRNN
收稿时间:2013-03-06

Gas Emission Forecast Based on GRNN
Ge Jiang. Gas Emission Forecast Based on GRNN[J]. , 2013, 0(4): 105-108
Authors:Ge Jiang
Affiliation:School of Transportation and Logistics, Southwest Jiaotong University
Abstract:This paper introduces the characteristics of the gas emission forecast and the GRNN, and points out the rationality of using GRNN to forecast the gas emission and its advantage over the BP. The forecast is carried out based on a case, proving that GRNN can solve the problem of gas emission.
Keywords:neural   gas emission  forecast  GRNN
点击此处可从《石家庄铁道学院学报(社会科学版)》浏览原始摘要信息
点击此处可从《石家庄铁道学院学报(社会科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号