首页 | 本学科首页   官方微博 | 高级检索  
     

移动荷载作用下接触网的动力响应
引用本文:冯自进,郭树起,马宝平. 移动荷载作用下接触网的动力响应[J]. 石家庄铁道学院学报(社会科学版), 2013, 0(3): 74-80,86
作者姓名:冯自进  郭树起  马宝平
作者单位:石家庄铁道大学 工程力学系;石家庄铁道大学 工程力学系;石家庄铁道大学 工程力学系
基金项目:国家自然科学基金(11272219;11072157)
摘    要:研究接触网在移动荷载作用下的动力响应。通过接触网的模型建立其运动微分方程,由于接触网的弹性系数在每跨内呈现函数的形式变化,经过适当变换后可以得出一个二阶变系数微分方程,采用WKB法对其进行求解。再通过周期性条件和悬挂点处力的平衡条件得出接触网的模态函数和频率方程。最后采用模态叠加法对接触线的运动微分方程进行求解,最终得出了接触线在受电弓作用下的动力响应。

关 键 词:弹性系数;边界条件;频率方程;动态响应
收稿时间:2013-01-09

Dynamic Response of High-speed Railway Catenary
Feng Zijin,Guo Shuqi and Ma Baoping. Dynamic Response of High-speed Railway Catenary[J]. , 2013, 0(3): 74-80,86
Authors:Feng Zijin  Guo Shuqi  Ma Baoping
Abstract:In this paper, the dynamic response of the railway catenary with the the action of the moving load is investigated. The motion equation is established using a partial differential equation based on the contact model. Due to the variational stiffness of the catenary system, in the terms of the proposed transformation, the motion equation is a second order differential equation with variable coefficients. Solving the equation with WKB method, one could obtain the mode function and frequency equation with the two special boundary conditions. At last, using the mode superposition method, the partial differential equation is solved. Then, the effect of parameters is discussed.
Keywords:stiffness  boundary conditions  frequency equation  dynamic response
点击此处可从《石家庄铁道学院学报(社会科学版)》浏览原始摘要信息
点击此处可从《石家庄铁道学院学报(社会科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号