Application of Bayesian hierarchical models for phase I/II clinical trials in oncology |
| |
Authors: | Shinjo Yada Chikuma Hamada |
| |
Affiliation: | 1. Faculty of Engineering, Tokyo University of Science, Tokyo, Japan;2. Department of Biostatistics, A2 Healthcare Corporation, Tokyo, Japan |
| |
Abstract: | Treatment during cancer clinical trials sometimes involves the combination of multiple drugs. In addition, in recent years there has been a trend toward phase I/II trials in which a phase I and a phase II trial are combined into a single trial to accelerate drug development. Methods for the seamless combination of phases I and II parts are currently under investigation. In the phase II part, adaptive randomization on the basis of patient efficacy outcomes allocates more patients to the dose combinations considered to have higher efficacy. Patient toxicity outcomes are used for determining admissibility to each dose combination and are not used for selection of the dose combination itself. In cases where the objective is not to find the optimum dose combination solely for efficacy but regarding both toxicity and efficacy, the need exists to allocate patients to dose combinations with consideration of the balance of existing trade‐offs between toxicity and efficacy. We propose a Bayesian hierarchical model and an adaptive randomization with consideration for the relationship with toxicity and efficacy. Using the toxicity and efficacy outcomes of patients, the Bayesian hierarchical model is used to estimate the toxicity probability and efficacy probability in each of the dose combinations. Here, we use Bayesian moving‐reference adaptive randomization on the basis of desirability computed from the obtained estimator. Computer simulations suggest that the proposed method will likely recommend a higher percentage of target dose combinations than a previously proposed method. |
| |
Keywords: | bayesian adaptive randomization combination therapy seamless phase I/II trials |
|
|