首页 | 本学科首页   官方微博 | 高级检索  
     


Frailty models power variance function with cure fraction and latent risk factors negative binomial
Authors:Vinicius Fernando Calsavara  Agatha Sacramento Rodrigues  Vera Lúcia Damasceno Tomazella  Mário de Castro
Affiliation:1. Departamento de Epidemiologia e Estatística, Centro Internacional de Pesquisa, A.C. Camargo Cancer Center, S?o Paulo-SP, Brazil;2. Instituto de Matemática e Estatística, Universidade de S?o Paulo, S?o Paulo-SP, Brazilvinicius.calsavara@cipe.accamargo.org.br;4. Instituto de Matemática e Estatística, Universidade de S?o Paulo, S?o Paulo-SP, Brazil;5. Departamento de Estatística, Universidade Federal de S?o Carlos, S?o Carlos-SP, Brazil;6. Instituto de Ciências Matemáticas e de Computa??o, Universidade de S?o Paulo, S?o Carlos-SP, Brazil
Abstract:In this article, we propose a flexible cure rate model, which is an extension of Cancho et al. (2011 Cancho, V.G., Rodrigues, J., de Castro, M. (2011). A flexible model for survival data with a cure rate: A Bayesian approach. J. Appl. Stat. 38:5770.[Taylor &; Francis Online], [Web of Science ®] [Google Scholar]) model, by incorporating a power variance function (PVF) frailty term in latent risk. The model is more flexible in terms of dispersion and it also quantifies the unobservable heterogeneity. The parameter estimation is reached by maximum likelihood estimation procedure and Monte Carlo simulation studies are considered to evaluate the proposed model performance. The practical relevance of the model is illustrated in a real data set of preventing cancer recurrence.
Keywords:Cancer recurrence  competing risks  cure rate models  frailty models  power variance function (PVF) distribution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号