首页 | 本学科首页   官方微博 | 高级检索  
     


Generalized Sobol sensitivity indices for dependent variables: numerical methods
Authors:G. Chastaing  F. Gamboa  C. Prieur
Affiliation:1. Université de Grenoble, LJK/MOISE BP53 38041 Grenoble cedex, Francegal.chastaing@gmail.com;3. Université Paul Sabatier, IMT-EPS, 118, Route de Narbonne, 31062 Toulouse Cedex 9, France;4. Université de Grenoble, LJK/MOISE BP53 38041 Grenoble cedex, France
Abstract:The hierarchically orthogonal functional decomposition of any measurable function η of a random vector X=(X1,?…?, Xp) consists in decomposing η(X) into a sum of increasing dimension functions depending only on a subvector of X. Even when X1,?…?, Xp are assumed to be dependent, this decomposition is unique if the components are hierarchically orthogonal. That is, two of the components are orthogonal whenever all the variables involved in one of the summands are a subset of the variables involved in the other. Setting Y=η(X), this decomposition leads to the definition of generalized sensitivity indices able to quantify the uncertainty of Y due to each dependent input in X [Chastaing G, Gamboa F, Prieur C. Generalized Hoeffding–Sobol decomposition for dependent variables – application to sensitivity analysis. Electron J Statist. 2012;6:2420–2448]. In this paper, a numerical method is developed to identify the component functions of the decomposition using the hierarchical orthogonality property. Furthermore, the asymptotic properties of the components estimation is studied, as well as the numerical estimation of the generalized sensitivity indices of a toy model. Lastly, the method is applied to a model arising from a real-world problem.
Keywords:sensitivity analysis  dependent variables  extended basis  functional decomposition  greedy algorithm  LARS
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号