首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling Microbial Growth Within Food Safety Risk Assessments
Authors:Thomas Ross    Thomas Alexander McMeekin
Affiliation:School of Agricultural Science, University of Tasmania, Hobart, Australia.
Abstract:Risk estimates for food-borne infection will usually depend heavily on numbers of microorganisms present on the food at the time of consumption. As these data are seldom available directly, attention has turned to predictive microbiology as a means of inferring exposure at consumption. Codex guidelines recommend that microbiological risk assessment should explicitly consider the dynamics of microbiological growth, survival, and death in foods. This article describes predictive models and resources for modeling microbial growth in foods, and their utility and limitations in food safety risk assessment. We also aim to identify tools, data, and knowledge sources, and to provide an understanding of the microbial ecology of foods so that users can recognize model limits, avoid modeling unrealistic scenarios, and thus be able to appreciate the levels of confidence they can have in the outputs of predictive microbiology models. The microbial ecology of foods is complex. Developing reliable risk assessments involving microbial growth in foods will require the skills of both microbial ecologists and mathematical modelers. Simplifying assumptions will need to be made, but because of the potential for apparently small errors in growth rate to translate into very large errors in the estimate of risk, the validity of those assumptions should be carefully assessed. Quantitative estimates of absolute microbial risk within narrow confidence intervals do not yet appear to be possible. Nevertheless, the expression of microbial ecology knowledge in "predictive microbiology" models does allow decision support using the tools of risk assessment.
Keywords:Predictive microbiology    microbial growth modeling    food safety    risk assessment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号