首页 | 本学科首页   官方微博 | 高级检索  
     


Estimators of shift based on statistics of the Kolmogorov-Smirnov type
Authors:Alain Boulanger
Abstract:This paper is concerned with the estimation of a shift parameter δo, based on some nonnegative functional Hg1 of the pair (DδN(x), f?δN(x)), where DδN(x) = KN/b {F2,n(x)—F1,m (x + δ)}, +δN(x) = {mF1,m (x + δ) + nF2,n(x)}/N, where F1,m and F2,n are the empirical distribution functions of two independent random samples (N = m + n), and where K2N = mn/N. First an estimator δN, is defined as a value of δ minimizing a functional H of the type of H1. A second estimator δ1N is also defined which is a linearized version of the first. Finite and asymptotic properties of these estimators are considered. It is also shown that most well-known test statistics of the Kolmogorov-Smirnov type are particular cases of such functionals H1. The asymptotic distribution and the asymptotic efficiency of some estimators are given.
Keywords:Nonparametric estimation  linearized estimator  shift estimator  Kolmogorov-Smirnov statistics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号