首页 | 本学科首页   官方微博 | 高级检索  
     


Non‐Gaussian geostatistical modeling using (skew) t processes
Authors:Moreno Bevilacqua,Christian Caama  o‐Carrillo,Reinaldo B. Arellano‐Valle,Ví  ctor Morales‐O  ate
Affiliation:Moreno Bevilacqua,Christian Caamaño‐Carrillo,Reinaldo B. Arellano‐Valle,Víctor Morales‐Oñate
Abstract:We propose a new model for regression and dependence analysis when addressing spatial data with possibly heavy tails and an asymmetric marginal distribution. We first propose a stationary process with t marginals obtained through scale mixing of a Gaussian process with an inverse square root process with Gamma marginals. We then generalize this construction by considering a skew‐Gaussian process, thus obtaining a process with skew‐t marginal distributions. For the proposed (skew) t process, we study the second‐order and geometrical properties and in the t case, we provide analytic expressions for the bivariate distribution. In an extensive simulation study, we investigate the use of the weighted pairwise likelihood as a method of estimation for the t process. Moreover we compare the performance of the optimal linear predictor of the t process versus the optimal Gaussian predictor. Finally, the effectiveness of our methodology is illustrated by analyzing a georeferenced dataset on maximum temperatures in Australia.
Keywords:Gaussian scale mixture  heavy‐tailed processes  hypergeometric functions  multivariate skew‐normal distribution  pairwise likelihood
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号