首页 | 本学科首页   官方微博 | 高级检索  
     


A likelihood-based constrained algorithm for multivariate normal mixture models
Authors:Salvatore?Ingrassia  author-information"  >  author-information__contact u-icon-before"  >  mailto:s.ingrassia@unical.it"   title="  s.ingrassia@unical.it"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Dipartimento di Economia e Statistica, Universitá della Calabria, 87036 Arcavacata di Rende (CS), Italy
Abstract:It is well known that the log-likelihood function for samples coming from normal mixture distributions may present spurious maxima and singularities. For this reason here we reformulate some Hathawayrsquos results and we propose two constrained estimation procedures for multivariate normal mixture modelling according to the likelihood approach. Their perfomances are illustrated on the grounds of some numerical simulations based on the EM algorithm. A comparison between multivariate normal mixtures and the hot-deck approach in missing data imputation is also considered.Salvatore Ingrassia: S. Ingrassia carried out the research as part of the project Metodi Statistici e Reti Neuronali per lrsquoAnalisi di Dati Complessi (PRIN 2000, resp. G. Lunetta).
Keywords:Mixture models  likelihood  EM algorithm  missing data
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号