首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive Posterior Mode Estimation of a Sparse Sequence for Model Selection
Authors:SYLVAIN SARDY
Affiliation:Department of Mathematics, University of Geneva
Abstract:Abstract.  For the problem of estimating a sparse sequence of coefficients of a parametric or non-parametric generalized linear model, posterior mode estimation with a Subbotin( λ , ν ) prior achieves thresholding and therefore model selection when ν   ∈    [0,1] for a class of likelihood functions. The proposed estimator also offers a continuum between the (forward/backward) best subset estimator ( ν  =  0 ), its approximate convexification called lasso ( ν  =  1 ) and ridge regression ( ν  =  2 ). Rather than fixing ν , selecting the two hyperparameters λ and ν adds flexibility for a better fit, provided both are well selected from the data. Considering first the canonical Gaussian model, we generalize the Stein unbiased risk estimate, SURE( λ , ν ), to the situation where the thresholding function is not almost differentiable (i.e. ν    1 ). We then propose a more general selection of λ and ν by deriving an information criterion that can be employed for instance for the lasso or wavelet smoothing. We investigate some asymptotic properties in parametric and non-parametric settings. Simulations and applications to real data show excellent performance.
Keywords:extreme value theory    generalized linear model    Gumbel and Fréchet prior    information criterion    lasso   ν-penalized likelihood    model selection    sparsity    Stein unbiased risk estimate    threshold    wavelet smoothing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号