Dynamic changes in numerical acuity in 4-month-old infants |
| |
Authors: | Jinjing (Jenny) Wang Lisa Feigenson |
| |
Affiliation: | Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA |
| |
Abstract: | Preverbal infants represent the approximate numerosity of visual and auditory arrays: By 6 months old, they reliably discriminate eight dots or tones from 16 (a 1:2 ratio), but not eight from 12 (a 2:3 ratio). The precision of this approximate number sense improves gradually over childhood and into adulthood. However, less is known about numerical abilities in younger infants, and in particular, whether there is developmental change in the number sense in the first half year of life. Here, in four experiments, we measured numerical precision in 4-month-old infants (N = 128) using a visual habituation task comparable to that in studies of older infants. We found that 4-month-olds exhibited poorer numerical discrimination than the 6-month-olds tested in previous studies, dishabituating to a 1:4 change in numerical ratio, but not a 1:3 change. Like older infants, 4-month-olds’ numerical precision improved when they were provided with redundant visual and auditory input; when both visual and auditory information were present, 4-month-olds discriminated a 1:3 but not a 1:2 ratio. These results suggest that Approximate Number System precision develops in early infancy and may be sensitive to intersensory redundancy as early as four months of age. |
| |
Keywords: | Approximate Number System cognitive development infants intersensory redundancy numerical cognition |
|
|