首页 | 本学科首页   官方微博 | 高级检索  
     


Consistency of information criteria for model selection with missing data
Authors:Abdelaziz El Matouat  Freedath Djibril Moussa  Hassania Hamzaoui
Affiliation:1. LMAH, University of Le Havre, Le Havre, Franceabdelaziz.el-matouat@univ-lehavre.fr;3. LIM, Math. Dept., Sidi Mohamed Ben Abdellah University, Fez, Morocco
Abstract:ABSTRACT

In this paper, we investigate the consistency of the Expectation Maximization (EM) algorithm-based information criteria for model selection with missing data. The criteria correspond to a penalization of the conditional expectation of the complete data log-likelihood given the observed data and with respect to the missing data conditional density. We present asymptotic properties related to maximum likelihood estimation in the presence of incomplete data and we provide sufficient conditions for the consistency of model selection by minimizing the information criteria. Their finite sample performance is illustrated through simulation and real data studies.
Keywords:Consistency  EM algorithm  Information criteria  Kullback–Leibler divergence  Missing data.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号