首页 | 本学科首页   官方微博 | 高级检索  
     


A recursive approach for estimating missing observations in an univariate time series
Authors:Fabio H. Nieto  Jorge Martínez
Affiliation:Departamento de Mátematicas y Estadística , Universidad Nacional de Colombia Ciudad Universitaria , P.0. Box 90277-4 Kung-Shan, Bogotá, D.C, Colombia
Abstract:A linear recursive technique that does not use the Kalman filter approach is proposed to estimate missing observations in an univariate time series. It is assumed that the series follows an invertible ARIMA model. The procedure is based on the restricted forecasting approach, and the recursive linear estimators are optimal in terms of minimum mean-square error.
Keywords:ARIMA models  Minimum-mean-square error  Missing observations  Recursive linear estimation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号