The double chain markov model |
| |
Authors: | Andre Berchtold |
| |
Affiliation: | Department of Statistics , University of Washington , Seattle, WA, 98195, USA |
| |
Abstract: | In the class of discrete time Markovian processes, two models are widely used, the Markov chain and the hidden Markov model. A major difference between these two models lies in the relation between successive outputs of the observed variable. In a visible Markov chain, these are directly correlated while in hidden models they are not. However, in some situations it is possible to observe both a hidden Markov chain and a direct relation between successive observed outputs. Unfortunately, the use of either a visible or a hidden model implies the suppression of one of these hypothesis. This paper prsents a Markovian model under random environment called the Double Chain Markov Model which takes into account the maijn features of both visible and hidden models. Its main purpose is the modeling of non-homogeneous time-series. It is very flexible and can be estimated with traditional methods. The model is applied on a sequence of wind speeds and it appears to model data more successfully than both the usual Markov chains and hidden Markov models. |
| |
Keywords: | non homogenous markov chains hidden process random environment iterative estimation algorithms |
|
|