首页 | 本学科首页   官方微博 | 高级检索  
     


Approximation and information topologies
Authors:Paul Whitney
Affiliation:Department of Statistical Sciences , Southern Methodist University , Dallas, Texas, 75275
Abstract:In this paper approximation properties of finite dimensional parametric models are described in terms of an information metric: the Hellinger distance. Under conditions on the parametric family given solely in terms of a comparison of the Hellinger distance with the parameter metric, optimal rates of convergence are described. It is also shown how to use these conditions on the parametric family to determine whether consistent estimation is possible. We give applications of the theorems to regular and non-regular parametric families, and to nonlinear regression.
Keywords:r-Bayes estimate  consistency  optimal rates of convergence  parametric models  Hellinger distance  nonlinear regression
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号