首页 | 本学科首页   官方微博 | 高级检索  
     


Robustness of the posterior mean in normal hierarchical models
Authors:J.A. Cano  J.A. Cano
Affiliation:Facultad de Matematicas , Universidad de Murcia , Murcia, 30071, Spain
Abstract:We consider the problem of robustness in hierarchical Bayes models. Let X = (X1,X2, … ,Xp)τ be a random vector, the X1 being independently distributed as N(θ12) random variables (σ2 known), while the θ1 are thought to be exchangeable, modelled as i.i.d, N(μ,τ2). The hyperparameter µ is given a noninformative prior distribution π(μ) = 1 and τ2 is assumed to be independent of µ having a distribution g(τ2) lying in a certain class of distributions g. For several g's, including e-contaminations classes and density ratio classes we determine the range of the posterior mean of θ1 as g ranges over g.
Keywords:bayesian robustness  classes of priors  hierarchical models  normal means
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号