Abstract: | A sequence of empirical Bayes estimators is given for estimating a distribution function. It is shown that ‘i’ this sequence is asymptotically optimum relative to a Gamma process prior, ‘ii’ the overall expected loss approaches the minimum Bayes risk at a rate of n , and ‘iii’ the estimators form a sequence of proper distribution functions. Finally, the numerical example presented by Susarla and Van Ryzin ‘Ann. Statist., 6, 1978’ reworked by Phadia ‘Ann. Statist., 1, 1980, to appear’ has been analyzed and the results are compared to the numerical results by Phadia |