首页 | 本学科首页   官方微博 | 高级检索  
     


Semiparametric inference on partially linear single-index model
Authors:Zhensheng Huang  Riquan Zhang  Yazhao Lv
Affiliation:1. School of Science, Nanjing University of Science and Technology, Nanjing, Jiangsu, P. R. Chinasta.zshuang@gmail.com;3. Department of Statistics and Actuarial Science, East China Normal University, Shanghai, P. R. China
Abstract:ABSTRACT

We consider semiparametric inference on the partially linearsingle-index model (PLSIM). The generalized likelihood ratio (GLR) test is proposed to examine whether or not a family of new semiparametric models fits adequately our given data in the PLSIM. A new GLR statistic is established to deal with the testing of the index parameter α0 in the PLSIM. The newly proposed statistic is shown to asymptotically follow a χ2-distribution with the scale constant and the degrees of freedom being independent of the nuisance parameters or function. Some finite sample simulations and a real example are used to illustrate our proposed methodology.
Keywords:Generalized likelihood ratio test  Local linear method  Partially linear single-index models  Wilks phenomenon  χ2-distribution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号