首页 | 本学科首页   官方微博 | 高级检索  
     


Parameter estimation based upon nonparametric function estimators
Authors:Vincent N. lariccia
Affiliation:Department of Mathematical Sciences , University of Delaware Newark , Delaware, 19716
Abstract:By considering the solution to a linear approximation of a nonlinear regression problem, a procedure for developing a para¬meter estimator, based upon a nonpammetric estimator of a para¬metric function, is given. The resulting estimators, which are determinable in closed form, are asymptotically normally distri¬buted and are optimal among the class of estimators based upon the function estimator. Further, in many cases, the estimator will have the same asymptotic distribution theory as the correspond¬ing maximum likelihood estimator. Estimators based upon the Kaplan-Meier quantile function are developed for randomly censored samples.
Keywords:asymptotic distribution theory and relative efficiency  reproducing kernel Hilbert space  random censoring
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号