首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian bivariate survival analysis using the power variance function copula
Authors:Jose S. Romeo  Renate Meyer  Diego I. Gallardo
Affiliation:1.Department of Mathematics,University of Santiago,Santiago,Chile;2.SHORE and Whariki Research Centre, College of Health,Massey University,Auckland,New Zealand;3.Department of Statistics,University of Auckland,Auckland,New Zealand;4.Departamento de Matematicas, Facultad de Ingenieria,Universidad de Atacama,Copiapo,Chile
Abstract:Copula models have become increasingly popular for modelling the dependence structure in multivariate survival data. The two-parameter Archimedean family of Power Variance Function (PVF) copulas includes the Clayton, Positive Stable (Gumbel) and Inverse Gaussian copulas as special or limiting cases, thus offers a unified approach to fitting these important copulas. Two-stage frequentist procedures for estimating the marginal distributions and the PVF copula have been suggested by Andersen (Lifetime Data Anal 11:333–350, 2005), Massonnet et al. (J Stat Plann Inference 139(11):3865–3877, 2009) and Prenen et al. (J R Stat Soc Ser B 79(2):483–505, 2017) which first estimate the marginal distributions and conditional on these in a second step to estimate the PVF copula parameters. Here we explore an one-stage Bayesian approach that simultaneously estimates the marginal and the PVF copula parameters. For the marginal distributions, we consider both parametric as well as semiparametric models. We propose a new method to simulate uniform pairs with PVF dependence structure based on conditional sampling for copulas and on numerical approximation to solve a target equation. In a simulation study, small sample properties of the Bayesian estimators are explored. We illustrate the usefulness of the methodology using data on times to appendectomy for adult twins in the Australian NH&MRC Twin registry. Parameters of the marginal distributions and the PVF copula are simultaneously estimated in a parametric as well as a semiparametric approach where the marginal distributions are modelled using Weibull and piecewise exponential distributions, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号