首页 | 本学科首页   官方微博 | 高级检索  
     


Quadratic subspaces and construction of Bayes invariant quadratic estimators of variance components in mixed linear models
Authors:Mariusz Grządziel
Affiliation:(1) Department of Mathematics, Agricultural University of Wrocław, Grunwaldzka 53, 50 357 Wrocław, Poland
Abstract:Gnot et al. (J Statist Plann Inference 30(1):223–236, 1992) have presented the formulae for computing Bayes invariant quadratic estimators of variance components in normal mixed linear models of the form $$mathcal{N}{y,Xbeta,sum_{i=1}^{k} sigma_{i}^{2} V_{i} },$$ where the matrices V i , 1 ≤ ik − 1, are symmetric and nonnegative definite and V k is an identity matrix. These formulae involve a basis of a quadratic subspace containing MV 1 M,...,MV k-1 M,M, where M is an orthogonal projector on the null space of X′. In the paper we discuss methods of construction of such a basis. We survey Malley’s algorithms for finding the smallest quadratic subspace including a given set of symmetric matrices of the same order and propose some modifications of these algorithms. We also consider a class of matrices sharing some of the symmetries common to MV 1 M,...,MV k-1 M,M. We show that the matrices from this class constitute a quadratic subspace and describe its explicit basis, which can be directly used for computing Bayes invariant quadratic estimators of variance components. This basis can be also used for improving the efficiency of Malley’s algorithms when applied to finding a basis of the smallest quadratic subspace containing the matrices MV 1 M,...,MV k-1 M,M. Finally, we present the results of a numerical experiment which confirm the potential usefulness of the proposed methods. Dedicated to the memory of Professor Stanisław Gnot.
Keywords:Quadratic subspace of symmetric matrices  Jordan algebra  Mixed linear model
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号