首页 | 本学科首页   官方微博 | 高级检索  
     

推荐系统对消费者网购支出的影响研究
引用本文:胡春华,赵慧,童小芹,任剑. 推荐系统对消费者网购支出的影响研究[J]. 中国管理科学, 2020, 28(6): 158-170. DOI: 10.16381/j.cnki.issn1003-207x.2020.06.015
作者姓名:胡春华  赵慧  童小芹  任剑
作者单位:1. 湖南工商大学大数据与互联网创新研究院, 湖南 长沙 410205;2. 移动商务智能湖南省重点实验室, 湖南 长沙 410205;3. 湖南省移动电子商务协同创新中心, 湖南 长沙 410205
基金项目:国家自然科学基金资助重大项目(71991460,71991465);国家自然科学基金资助项目(91846301);湖南省自然科学基金资助项目(2018JJ2198);湖南省教育厅科学研究重点项目(19A276)
摘    要:推荐系统能在电子商务中利用信息过滤技术为消费者推荐感兴趣的商品和服务。本文通过收集大量消费者网购调查问卷,问卷的信度和效度均符合数据分析的要求。首先分析了消费者的产品偏好、忠诚度等网购行为与其年龄、性别、地域等个人属性的相互关系,之后运用倾向得分匹配法(Propensity Score Matching,PSM)研究推荐系统对消费者网购支出的影响,同时使用工具变量法((Instrumental Variable,IV)对PSM研究结果进行稳健性检验。结果显示使用推荐系统的消费者网购支出比未使用的消费者高出14.7%,网购支出与受教育程度和收入水平呈正相关、与年龄呈负相关,城市消费者和女性更愿意使用推荐系统;同时统计分析表明推荐效果受电子商务平台中社交关系、互补产品、店铺声誉等因素影响。研究结果对评估推荐系统的经济效益、增强消费者忠诚度和提高商家营销的精准性等方面起到了重要作用。

关 键 词:消费者网购支出  推荐系统  倾向得分匹配  工具变量法
收稿时间:2020-02-07
修稿时间:2020-03-31

Research on the Impact of Intelligent Recommendation System on Consumer Online Shopping
HU Chun-hua,ZHAO Hui,TONG Xiao-qin,REN Jian. Research on the Impact of Intelligent Recommendation System on Consumer Online Shopping[J]. Chinese Journal of Management Science, 2020, 28(6): 158-170. DOI: 10.16381/j.cnki.issn1003-207x.2020.06.015
Authors:HU Chun-hua  ZHAO Hui  TONG Xiao-qin  REN Jian
Affiliation:1. Research Institute of Big Data and Internet Innovation, Hunan University of Technology and Business,Changsha 410205, China;2. Key Laboratory of Hunan Province for Mobile Business Intelligence, Changsha 410205, China;3. Mobile E-business Collaborative Innovation Center of Hunan Province, Changsha 410205, China
Abstract:The recommendation system, with information filtering technology, is used to recommend products and services of interest to consumers in e-commerce. The relationship between consumers’ online shopping behaviors, including preferences and loyalty, and their personal attributes such as age, gender and region is analyzed by collecting a large number of questionnaires concerning online shopping with which the reliability and validity requirement for data analysis are met. Propensity Score Matching Method (PSM) is used to study the impact of using recommendation system on expenditure of online shopping. Instrumental Variables Method (IV) is conducted to test the robustness of PSM research results. The results show that the consumer online shopping expenditure using the recommendation system is 14.7% higher than that of the unused one.Online shopping spending is positively correlated with education and income, and negatively correlated with age.Urban consumers and women are more willing to use the recommendation system.Generally, recommendation effect is affected by social relations,complementary products, store reputation. The research results play an important role in assessing the economic benefits of recommendation system, promoting recommendation system to help consumers purchase satisfactory products, and enhancing consumer loyalty.
Keywords:consumer online shopping expenditure  recommendation system  propensity score matching method  instrumental variables method  
本文献已被 维普 等数据库收录!
点击此处可从《中国管理科学》浏览原始摘要信息
点击此处可从《中国管理科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号