首页 | 本学科首页   官方微博 | 高级检索  
     


A Monte Carlo EM algorithm for random-coefficient-based dropout models
Authors:Claudio J. Verzilli   James R. Carpenter
Abstract:Longitudinal studies of neurological disorders suffer almost inevitably from non-compliance, which is likely to be non-ignorable. It is important in these cases to model the response variable and the dropout mechanism jointly. In this article we propose a Monte Carlo version of the EM algorithm that can be used to fit random-coefficient-based dropout models. A linear mixed model is assumed for the response variable and a discrete-time proportional hazards model for the dropout mechanism; these share a common set of random coefficients. The ideas are illustrated using data from a five-year trial assessing the efficacy of two drugs in the treatment of patients in the early stages of Parkinson's disease.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号