首页 | 本学科首页   官方微博 | 高级检索  
     


Extending conditional likelihood in models for stratified binary data
Authors:Ruggero?Bellio  author-information"  >  author-information__contact u-icon-before"  >  mailto:ruggero.bellio@dss.uniud.it"   title="  ruggero.bellio@dss.uniud.it"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author,Nicola?Sartori
Affiliation:(1) Dipartimento di Scienze Statistiche, Universitá degli Studi di Udine, Via Treppo 18, 33100 Udine, Italy;(2) Dipartimento di Scienze, Statistiche Universitá degli Studi di Padova, Via C. Battisti 241, 35121 Padova, Italy
Abstract:The conditional likelihood is widely used in logistic regression models with stratified binary data. In particular, it leads to accurate inference for the parameters of interest, which are common to all strata, eliminating stratum-specific nuisance parameters. The modified profile likelihood is an accurate approximation to the conditional likelihood, but has the advantage of being available for general parametric models. Here, we propose the modified profile likelihood as an ideal extension of the conditional likelihood in generalized linear models for binary data, with generic link function. An important feature is that for the implementation we only need standard outputs of routines for generalized linear models. The accuracy of the method is supported by theoretical properties and is confirmed by simulation results.This research was supported by MIUR COFIN 2001-2003.
Keywords:  KeywordHeading"  >: Conditional likelihood  modified profile likelihood  nuisance parameter  profile likelihood  stratified data
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号