首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A bivariate space-time downscaler under space and time misalignment
Authors:Berrocal Veronica J  Gelfand Alan E  Holland David M
Abstract:Ozone and particulate matter PM(2.5) are co-pollutants that have long been associated with increased public health risks. Information on concentration levels for both pollutants come from two sources: monitoring sites and output from complex numerical models that produce concentration surfaces over large spatial regions. In this paper, we offer a fully-model based approach for fusing these two sources of information for the pair of co-pollutants which is computationally feasible over large spatial regions and long periods of time. Due to the association between concentration levels of the two environmental contaminants, it is expected that information regarding one will help to improve prediction of the other. Misalignment is an obvious issue since the monitoring networks for the two contaminants only partly intersect and because the collection rate for PM(2.5) is typically less frequent than that for ozone.Extending previous work in Berrocal et al. (2009), we introduce a bivariate downscaler that provides a flexible class of bivariate space-time assimilation models. We discuss computational issues for model fitting and analyze a dataset for ozone and PM(2.5) for the ozone season during year 2002. We show a modest improvement in predictive performance, not surprising in a setting where we can anticipate only a small gain.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号