首页 | 本学科首页   官方微博 | 高级检索  
     


Inference and Missing Data: Asymptotic Results
Authors:  ren Feodor Nielsen
Affiliation:University of Copenhagen
Abstract:In Rubin (1976) the missing at random (MAR) and missing completely at random (MCAR) conditions are discussed. It is concluded that the MAR condition allows one to ignore the missing data mechanism when doing likelihood or Bayesian inference but also that the stronger MCAR condition is in some sense the weakest generally sufficient condition allowing (conditional) frequentist inference while ignoring the missing data mechanism. In this paper it is shown that (a slightly strengthened version of) the MAR condition is sufficient to yield ordinary large sample results for estimators and test statistics and thus may be used for (asymptotic) frequentist inference.
Keywords:asymptotic results    MAR    MCAR    missing observations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号